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1) Introduction

• Motivation
• Increasing amounts of valuable goods in postal 

supply chains, transported using parcels 
need for automated parcel monitoring w.r.t. 
damage and tampering

• Multisensory setups are not always feasible 
(e.g. last-mile delivery)  focus on single RGB 
images to enable maximum flexibility

• Contributions: Novel synthetic dataset and 
targeted neural network architecture

• Related work: see [1] and online at                      
a-nau.github.io/cv-in-logistics

3) CubeRefine R-CNN Architecture

• Extends Cube R-CNN [4] by an 
iterative mesh refinement [5]

• Estimates 3D bounding box of 
pristine parcel and potentially 
deformed current shape 
simultaneously

• Enables detailed damage 
assessment by comparing two 3D 
meshes

• 3D bounding box facilitates 
tampering detection

2) Synthetic Dataset Parcel3D

• >13,000 images of damaged and intact parcels
• Model Selection
• (a) Automated filtering of GSO dataset [2] and 
• (b) physics-based simulation for deformations

• Texture Generation
• (c.1) Generate synthetic parcel textures and 
• (c.2) extrapolate existing textures, 
• (c.3) both with additional labels and logos

• Environment (d): Realistic scenes & lighting conditions [3]
• Annotations (d): bounding box, class label, segmentation mask, 

parcel corner points, full 3D mesh with rotation & translation, 3D 
bounding box of pristine shape

a

d

4) Evaluation & Conclusion

• Limitations: Only deformation damages; parcel damage != freight damage; diverse 
real-world deformations are challenging

• Conclusion: Parcel3D allows transfer to real-world data; CubeRefine R-CNN 
performs competitively and is the only method enabling 3D damage quantification
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Table: Quantitative performance analysis of mesh reconstruction when trained on Parcel3D and evaluated on different 
datasets. We repeated all trainings five times and report mean values with standard deviations in parentheses. 

Figure: Exemplary qualitative results. We show the input image with the projected 3D bounding box on the left, and a 
3×3 grid of mesh reconstructions on the right. Each column shows a different viewing angle, and the rows contain 

ground truth, 3D bounding box and refined mesh, respectively.
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